Stat_1301; Lecture 8; Feb. 1,'24
Tutoring Centre Review of Probability - Feb.5:12:30-1:20 pm.

Still in \$4.3.

Ex. (Prob 4-33) An experiment consists of 11 equally likely outcomes denoted by a, b, c, d, e, f, g, h, i, j and k. Consider the events $A=\{b, d, e, j\}$, $B=\{a, c, f, j\}$ and $C=\{c, g, k\}$.

Q'n: Are the events A and B independent? What about events A and C ?
§ 4.3.3 Independent vs. Dependent Events

Defin: Events A and B are said to be independent if

$$
P(A \mid B)=P(A) \text { or } P(B \mid A)=P(B) \text {. }
$$

If $P(A \mid B) \neq P(A)$ or $P(B \mid A) \neq P(B)$ then
A and B are said to be dependent events.

Result (§4.4): Independence of events A and B Can also be verified using the following:

If $P(A \cap B)=P(A) \times P(B)$, then A and B are independent events.

Read examples $4.16,4.17$ in ebook.

Ex. (Pr. 4-36; shoppers data)
One shopper is randomly selected from all 600 Shoppers.
i) What is the probability that the randomly selected shopper watches for Calories fat given the Shopper is female?

Last Lecture: $P($ "Yes" 1 "Females" $)=\frac{106}{300}=$ $=0.353$
ii) Are events "Yes" and "Females" independent?
ie. $P($ "Yes" l "Females") $\stackrel{?}{=} P($ "Yes")
$P($ "Yes") (= P (a randomly Selected shopper watches for Calories/fat) $=\frac{180}{600}=0.300$

Since $P($ "Yes" 1 "Females" $) \neq P$ ("Yes"), the events are dependent.

Ex. See problem at start of class.
a) Are the events A and B independent? What about events A and C ?

Sol'n:

$$
\begin{aligned}
& P(A \mid B) \stackrel{?}{=} P(A) \\
& P(A)=\frac{4}{11}\left(=\frac{m}{k} ; \text { Classical Prob. }\right) \\
& P(A \mid B)=\frac{1}{4}
\end{aligned}
$$

We are conditioning on event B. This means now $A=B=\{a, c, f, j\}$. Now, we count how many
of the outcomes in A appear in the new sample space; there is only such outcome (j).

$$
\begin{aligned}
& \underbrace{P(A \mid B)}_{4 / / 1}) \neq \begin{array}{l}
P(A) \\
\frac{1}{4}
\end{array} \Rightarrow A \text { and } B \text { are } \\
& \text { dependent events. } \\
& P(\underbrace{A \mid C)}_{\frac{0}{3}=0} \stackrel{?}{=} \underbrace{P(A)}_{4 / 11}
\end{aligned}
$$

$\Delta=C=\{c, g, k\}$. None of the outcomes of $A=\{b, d, e, j\}$ occur in C. Since $P(A \mid C) \neq P(A)$, $A \& C$ are dependent.
b) Are the events A and B mutually exclusive?

$$
\begin{aligned}
& P(A \cap B) \stackrel{?}{=} 0 \Leftrightarrow A \cap B \stackrel{?}{=} \phi \\
& A \cap B=\{j\} \neq \varnothing . \quad P(A \cap B)=\frac{1}{11} \neq 0 .
\end{aligned}
$$

$A \& B$ are NOT mutually exclusive.
C) Are events A and C mutually exclusive? $A \cap C=\varnothing \Rightarrow A \notin C$ are mutually exclusive.
§4.3.4 Complement of an Event

Let A be an event. \bar{A} (read as "A Complem$e_{n} t^{\prime \prime}$) is the set of all outcomes in \& that are not in A.

$$
\begin{aligned}
& P(A)+P(\bar{A})=P(X)=1 \\
& P(\bar{A})=1-P(A) \quad \text { Given }
\end{aligned}
$$

Ex. Let A be the event that a number less than 3 is obtained when you roll a fair six-sided die once. Find $P(A)$ and $P(\bar{A})$.

Solon:

$$
\begin{aligned}
& \mathcal{S}=\{1,2,3,4,5,6\} \\
& A=\{1,2\} . \\
& P(A)=\frac{2}{6}\left(=\frac{m}{k}\right) \rightarrow 1 / 3 .
\end{aligned}
$$

$P(\bar{A})=1-1 / 3=2 / 3$. (Using law of Complements).

$$
\begin{aligned}
& \bar{A}=? \quad \bar{A}=\{3,4,5,6\} . \\
& P(\bar{A})=\frac{m}{k}=\frac{4}{6}=2 / 3 \quad \text { (using Classical } \\
& \text { Probability) }
\end{aligned}
$$

Ex. The probability that a randomly selected un Student did not attend a Stanley Cup Playoff game is 0.88. What is the Probability that a randomly selected student attended at least one game?

Sol'n:
Put $A=a$ randomly selected student attended at least one game.

$$
\begin{aligned}
& P(A)=? \\
& P(\text { at least one })=1-P(\text { none })
\end{aligned}
$$

$$
\begin{aligned}
P(A)= & 1-P(\bar{A}) \\
= & 1-P(\text { a randomly selected student } \\
& \quad \text { attends none of the games }) \\
= & 1-0.88=0.12
\end{aligned}
$$

§4.4 Intersection of Events \& Multiplication Rule.

Recall:

$$
A \cap B=B \cap A
$$

Rule for $P(A \cap B)$:

$$
P(A \cap B)=P(A) \times P(B \mid A)=P(B) \times P(A \mid B)
$$

Given

Recall: When $A \cap B=\phi$, then $P(A \cap B)=0$.
Result: Let A and B be independent events,
then $\quad P(A \cap B)=P(A) \times P(B)$.

Result: Let $A_{1}, A_{2}, \ldots, A_{n}$ are independent events, then

$$
P\left(A_{1} \cap A_{2} \cap \ldots . \cap A_{n}\right)=P\left(A_{1}\right) \times P\left(A_{2}\right) \times \ldots \times P\left(A_{n}\right) .
$$

Conditional Probability:
Rearranging the expression for $P(A \cap B)$ gives

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} ; P(B \mid A)=\frac{P(A \cap B)}{P(A)} .
$$

Ex. (Refer to Shoppers example).
Want: $P(\underbrace{\text { Yes" }}_{A}$ / "Females" $\underbrace{}_{B})$

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(\text { "Yes" } \cap \text { "Females") }}{P(\text { "Females" })} \\
& \rightarrow=\frac{106 / 600}{300600}=\frac{106}{300}
\end{aligned}
$$

want: $P($ Males" / "No")

$$
\begin{aligned}
> & =\frac{P(\text { Males" \& "No") }}{P\left(N N_{0} "\right)} \\
& =\frac{168 / 600}{292 / 600}=\frac{168}{292} \quad \text { (See last lecture) }
\end{aligned}
$$

Read examples in \$ 4.4.

