STAT-1301; Jan. 23, 124 Lecture 5

Percentiles and Rank Percentiles:

P_{k} is the k _th Percentile: $k \times 100 \%$ of the Sorted data is less than P_{k}.
$P_{k}=$ value of the $\frac{k \times n}{100}$ th term in a ranked data set.

Here, $k=$ number of the percentile;

$$
n \text { = Sample Size. }
$$

Ex. Find the $42^{\text {nd }}$ Percentile of the following data. Note: the data has already been sorted in increasing order. 2

$$
\begin{array}{ccccccc|}
11,669 & 13,435 & 14,413 & 18,103 & 18,215 & 21,088 \\
26,343 & 29,920 & 33,956 & 40,197 & 42,082 \\
40,769
\end{array}
$$

1. Sort data in increasing order. (Already done).
2. $L=\frac{k \times n}{100}=\frac{42 \times 12}{100}=5.04$ is the location of the $42^{\text {nd }}$ percentile $\left(P_{42}\right)$.

Text algo.: Since $\frac{k \times n}{100}=5.04$ is not an integer, round up to the next nearest integer.
ie. $5.04 \leadsto 6$
ie. The $42^{\text {nd }}$ percentile $\left(P_{42}\right)$ is the $6^{\text {th }}$ obs'n in the Sorted data.

$$
P_{42}=21,088 .
$$

Interpretation: 42% of the data is less chian 21,088.

Remark: $P_{25}=1^{\text {st }}$ Quartile $=Q_{1}$

$$
\begin{aligned}
& P_{50} \Leftrightarrow \text { median } \Leftrightarrow Q_{2} \\
& P_{75} \Leftrightarrow Q_{3} \Leftrightarrow 3^{\text {rd }} Q_{\text {uartile. }}
\end{aligned}
$$

Percentile Rank of a Value:

$$
\begin{aligned}
& \Leftrightarrow \quad \frac{\# \text { of obs'ns }<x}{n} \times 100 \% \text { where } \\
& n=\text { Sample Size. }
\end{aligned}
$$

Ex. Refer to the previous example data. Find the percentile rank of 29,920?

Sol'n:

1. Sort data in increasing order. Done!
2. 7 obsins are less than 29,920.

$$
\therefore \quad \frac{7}{12} \times 100 \%=58.33 \% \text { is the }
$$

percentile rank of 29,920.

MCQ Interpretation: Approx. 58\% of the data is less than 29, 920.
§3.6 Box-and-Whisker Plot
-used to understand the shape of the
distribution (ie. symmetric us. Skewed, etc.)

- Can visualize Outliers (extreme observations).

Problem 3.100: Golf Scores of 17 men and 15 women. We will construct boxplots of their Scores.

Men: $\begin{array}{llllllll}87 & 68 & 92 & 79 & 83 & 67 & 71 & 92\end{array}$ $\begin{array}{lllllllll}112 & 75 & 77 & 102 & 79 & 78 & 85 & 75 & 72\end{array}$

1. Sort data in increasing order. Find Q_{1}, Q_{2}, Q_{3} and IQR.

$$
\begin{aligned}
& Q_{1}=73.5, \quad Q_{2}=79, \quad Q_{3}=89.5 \text { and } \\
& I Q R=Q_{3}-Q_{1}=16 .
\end{aligned}
$$

2. lower inner fence (LIF): $=Q,-1.5 \times I Q R$

$$
\begin{aligned}
& =73.5-1.5 \times 16 \\
& =49.5
\end{aligned}
$$

$$
\text { upper inner fence (UIF):} \begin{aligned}
& =Q_{3}+1.5 \times I Q R \\
& =89.5+1.5+16 \\
& =113.5
\end{aligned}
$$

13. Consider the interval (LIF, UIF)

$$
=(49.5,113.5) \text { from Step } 2 .
$$

No observations outside of this interval. No outliers for the men's scores.
4. Draw a box based on Q_{1}, Q_{2}, Q_{3}.
women
Men

Here are the women's golf scores.
$\begin{array}{lllllllll}101 & 100 & 87 & 95 & 98 & 81 & 117 & 107 & 103\end{array}$ $\begin{array}{llllll}97 & 90 & 100 & 99 & 94 & 94\end{array}$
1.. Sort data in increasing order and find Q_{1}, Q_{2}, Q_{3}.

$$
Q_{1}=94, \quad Q_{2}=98, \quad Q_{3}=101 ; \quad I Q R=7
$$

2.

$$
\begin{aligned}
& \angle I F=Q_{1}-1.5 \times I Q R=83.5 \\
& U I F=Q_{3}+1.5 \times I Q R=111.5
\end{aligned}
$$

Since $81<L I F$ and $117>$ UIF, 81 and 117 are outliers.
3.) How for do the whiskers go?

$$
(L I F, U I F)=(83.5,111.5)
$$

i) Extend from Q_{1} to 87 , the smallest number in $(83.5,111.5)$.
ii) Extend from Q_{3} to 107 , the largest obs'n in $(83.5,111.5)$.

Boxplot Shapes:

\Rightarrow Skewed to the right

\Rightarrow Skewed to the left

Rule of thumb for outliers:
Let x be an observation.
If $x<$ LIF or $x>$ UIF, then
x is Said to be a (mild) outirer.
Here,

$$
\angle I F=Q_{1}-1.5 \times I Q R
$$

$$
U I F=Q_{3}+1.5 \times I Q R .
$$

(Know this rule of thumb).
Boxplot construction is not examined.
Back to golf data....

Data Analysis:

1. On average men are stronger players than the women. (Compared medians)

2 The men's scores have a larger spread than the women's Scores.
3. There are two outliers in the women's scores.
etc.
Ch. 4 Probability
Introduced motivation for studying Probability here. - Aspirin study.

