STAT_1301; Lecture 2; Jan. 11,'24

Now in Ch. 2.
Objectives: visualize quantitative data using frequency distribution or relative frequency distribution histograms.

Remarks: Skim Ch. 2
i) Know the "idea" behind histograms. ii) "how to interpret histogram shapes (e.g. for multiple choice gins).

Motivating Data Set:
Value of baseball teams in 2015 (will post data and figures on Nexus). $X=$ team value; $n=30$ observations.

Let's group the data and count the number of teams whose worth (in millions of \$)
is within the following intervals:

A table with the $1^{\text {st }}$ and $2^{\text {nd }}$ columns gives the frequency distribution of the data.

A table with the $1^{\text {st }}$ and $3^{\text {rd }}$ columns gives the relative frequency distribution of the data.

Rationale for summarizing data using these
distributions? Interpretability.
Frequency Distribution Histogram:
y-axis: frequency.
x-axis: intervals.

Relative Frequency Distribution Histogram: y-axis: relate frequency
x-axis: intervals
See Nexus "Lecture 2" for figures.
§ 2.2.7 Shapes of Histograms
(Know CQ's)
[Fig. 2. 10 in text]

Symmetric e.g. test scores, IQ height, weight

Skewed to the direction
(Skewness towards "unusual" obs'ns.)
e.g. income

Uniform

bimodal ~ 2 peaces.

Now in Ch. 3
§.3.1 Measures of Centre for Ungrouped

Motivating Example:
"Median after-tax income for most Canadian families in 2004 rose...
Canadian families with two or more people had an estimate median income after taxes of $854,000 \ldots .$. (Source: Stats. (an).
Some measures of Central tendency for a population are
i) mean
ii) median
iii) mode

Notation: We use μ ("mu") to denote a population mean.

Defins:
i) Mean : = Centre of mass/gravity

Population: $\quad X_{1}, \ldots, X_{N}$

$$
\mu=\frac{\sum_{i=1}^{N} X_{i}}{N} \leftarrow \text { Pop. mean }
$$

Sample: x_{1}, \ldots, x_{n}

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \leftarrow \text { Sample mean }
$$

ii) Median: = the element/member of the population (Sample) where 50% of the pop. (Sample) is Less than it (and 50% of the Pop. (Sample) is greater than it).
iii) Mode: the most frequently occurring member in the pop. (sample).

Ex. Here are birth weights of a Sample of babies born on a certain day at a facility (in lbs.):

$$
\begin{array}{lllll}
5.9 & 8.5 & 9.2 & 8.1 & 7.8
\end{array}
$$

The sample mean birthweight is

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{1}{5} \sum_{i=1}^{5} x_{i}=7.9
$$

(Check!)
Dotplot:

Q'n: What is the effect of an unusual observation on \bar{x} ?

Remove 5.9 from the data. Now the mean birthweight is $\bar{y}=8.4$.

Message: $\bar{\chi}$ is Sensihre to "unusual obs'ns". Specifically, \bar{x} is pulled in the direction of the extreme observations.

Median: It is the middle value in a data set that has been sorted in increasing order.

Ex. Data: $1016-9-7 \quad 0 \quad 2 \quad 57$
Find the Sample median.
i) Sort data in increasing order.
$\begin{array}{lllllll}-9 & -7 & 0 & 2 & 7 & 10\end{array}$ median $=\frac{2+5}{2}=3.5$
ii) Find the location of the location of the middle value.
$\frac{n+1}{2}=\frac{8+1}{2}=4.5 \rightarrow$ the location of the median

The sample median is the average of obs'ns 4 and 5 in the sorted dataset.

Ex. Data: $10 \quad 5 \quad 1983$
Sample median?

1. Sorted data:

$$
\begin{array}{lllll}
3 & 5 & 8 & 10 & 19
\end{array}
$$

2. $n=5 ; \quad \frac{n+1}{2}=\frac{5+1}{2}=3$ is the location of the median in the sorted data.

Q'n: What is the sample median of the dataset $3 \quad 5 \frac{\boxed{18}}{1} 10 \quad 190$?

Sample median
MCQ Remark: The median statistic is robust/ resistent to "unusual obs'ns".

Mode: = the obs'n(s) that occurs) with highest frequency.

Ex. Data

$$
\begin{array}{llllllll}
21 & 19 & 27 & 22 & 29 & 19 & 25 & 21
\end{array}
$$

2230

Modes: 19, 21 and 22.

Ex. Data: 2119272229 Mode (s) ?

No modes because every obs'n has the same frequency of one.

