STAT-1301; Lecture 19; March 21, '24

In Ch. 6.
Ex. An aptitude test administered to aircraft Pilot trainees requires a series of operations to be performed in quick succession. Suppose that the time needed to complete the test is normally distributed with mean $\mu=90$ minutes and $\sigma=20$ minutes.
a) To Pass the test, a candidate must Complete it within 80 minutes. What percentage of Candidates will pass the test?

Given: $X=$ time needed to complete the test. $X \sim N(90,20)$.

Want: $P(x<80)$

$$
\begin{aligned}
P(X<80)=P\left(Z<\frac{80-90}{20}\right) & =P(Z<-0.5) \\
Z \sim N(0.1) . & =0.3085 \\
& \text { (Table IV }) .
\end{aligned}
$$

Approx. 31\% of Candidates Pass the test.
b) If the top 5\% of the candidates are to be given a certificate of Commendation, how fast must a candidate complete the test to be eligible for a certificate?

Now this problem involves find the number whose left-tail probability under the standard normal density curve is 0.05 .

ie. $P(z<-1.65)=0.05$
Remark: This part b) is asking you to find P_{5}, the $5^{\text {th }}$ percentile of X.

Now equate the $5^{\text {th }}$ percentile of the $N(0,1)$ distribution to $\frac{q-90}{20}$ and solve for q.

$$
\begin{aligned}
& \frac{q-90}{20}=-1.65 \\
& 9=-1.65(20)+90=57 \text { minutes }
\end{aligned}
$$

1.e. To receive a certificate, an applicant must Complete the task in no more than 57 minutes.
C) Find the $70^{\text {th }}$ percentile of the probability distribution of Completion times.
want: P_{70}

$$
\begin{aligned}
& P(z<0.52)=0.6985 \approx 0.70 \\
& \quad \frac{q-90}{20}=0.52 \\
& \Rightarrow q=20(0.52)+90=100.4 \text { minutes }
\end{aligned}
$$

$\approx 70 \%$ of Completion times are 100.4 minutes or less.

Ex (Pr. 6.42) See ebook.
$X=$ monthly electric Consumption Per household

$$
X \sim N(1650,320)
$$

want: P_{90}

Look up 0.90 in the area portion of Table \bar{K}.
(This gives us the $90^{\text {th }}$ percentile of the $N(0,1)$ distribution.) We get 1.28 .
ie. $P(Z<1.28)=0.8997 \approx 0.90$

$$
\begin{aligned}
& \frac{q-1650}{320}=1.28 \\
& q=320(1.28)+1650=2059.6 \mathrm{kwh}
\end{aligned}
$$

Bill J's monthly electric Consumption is 2,059.6 kwh.
end of Ch. 6 .

Ch. 7 now.
See pdf notes Posted on Nexus: "Ch.7".

Ex. A package of bulbs claims that these bulbs have an average life of 24,966 hours. Assume that the lives of all such bulbs have a normal distribunion with a mean of 24,966 hours and a standard deviation of 2,000 hours. Find the Probability that the mean life of a random Sample of 25 Such bulbs is within 650 hours of the Population mean.

Sol'n:
$X=$ lifetime $; \quad X \sim N(24966,2000)$
cwant:

$$
\begin{aligned}
& P(24966-650<\bar{X}<24966+650) \\
= & P(24316<\bar{X}<25616)
\end{aligned}
$$

