STAT-1301; Lecture 17; π-day, 2024!

Ch. 6.

X : quantitative variable

etc.
These smoothed functions are known as Probability density functions.

Message: For continuous r.v.'s events are of the form $P(a<X<b)$. [c.f. discrete r.v.'s, events are of the form $P(X=a), P(a \leq X \leq b)=$

$$
P(X=a)+\cdots+P(X=b)] .
$$

$\therefore X$ continuous, $P(a<x<b)$ means find
the area under the probability density function curve over (a, b).

\& 6.2 The Normal Distribution
(le. the bell-shaped distribution in Ch. 3)

Facts:

- its probability density equation is symmetric about some number μ.
$-X \sim N(\mu, \sigma)$ read as X follows a normal distribution with population mean μ and population Standard deviation σ.
- Some texts: $\quad X \sim N\left(\mu, \sigma^{2}\right)$

Pop. variance

- If X is Normal with mean $\mu=0$ and $\sigma=1$, then use Z instead of X and write
$Z \sim N(0,1) . \leftarrow$ Standard normal distribution
- We use Table IV (App.B) to obtain left-tail probabilities of the $N(0,1)$ distribution. ie. $Z \sim N(0,1)$. want: $P(Z<b)$

Ex. $\quad Z \sim N(0.1) . \quad P(Z<-1.95)=$?

Table IV

z	0.05
	\vdots
	\vdots
-1.9	$\vdots-0.0256$

$$
P(Z<-1.95)=0.0256
$$

Ex. $Z \sim N(0,1) . \quad P(z<2.35)$.

z	0.05
	\vdots
2.3	--0.9906

Ex. $Z \sim N(0,1) . \quad P(Z>-0.46)$
(ie. find the right-tail probability of -0.46).

z	0.06
\vdots	\vdots
-0.4	$\cdots \cdots$
	$\underline{0.3228}$

$$
\begin{aligned}
\therefore P(z>-0.46) & =1-P(z<-0.46) \\
& =1-0.3228=0.6772
\end{aligned}
$$

Ex. $\quad Z \sim N(0,1) . \quad P(-1.61<Z<3.30)=?$

$$
\begin{aligned}
P(-1.61<z<3.30) & =P(Z<3.30)-P(Z<-1.61) \\
& =0.9995-0.0537 \\
& =0.9458(\text { Homework! })
\end{aligned}
$$

Ex. Verify the empirical rule for $Z \sim N(0,1)$.
i) $P(-1<Z<1) \stackrel{?}{=} 0.68$
ii) $P(-2<z<2) \stackrel{?}{\underline{2}} 0.95$
iii) $P(-3<z<3) \cong 0.997$
i)

$$
\begin{aligned}
P(-1<Z<1) & =P(Z<1)-P(Z<-1) \\
& =0.8413-0.1587
\end{aligned}
$$

Ex. $X \sim N(\mu, \sigma)$. Verify the Empirical Rule.

$$
\begin{aligned}
& P(\mu-\sigma<X<\mu+\sigma) \stackrel{?}{=} 0.68 \\
& P(\mu-2 \sigma<X<\mu+2 \sigma) \stackrel{?}{=} 0.95
\end{aligned}
$$

$$
P(\mu-3 \sigma<X<\mu+3 \sigma) \stackrel{?}{=} 0.997 .
$$

$$
P(\mu-\sigma<X<\mu+\sigma)
$$

TBA...
Result: If $X \sim N(\mu, \sigma)$, then
Z-score $\notin=\frac{X-\mu}{\sigma} \sim N(0,1)$.
"Standardized X".

Extra: $X \sim N(\mu, \sigma)$. Want to show that

$$
\begin{aligned}
& P(\mu-\sigma<X<\mu+\sigma) \cong 0.68 \\
= & P(\mu-\sigma<X<\mu+\sigma) \\
= & P(\mu-\sigma-\mu<X-\mu<\mu+\sigma-\mu) \\
= & P(-\sigma<X-\mu<\sigma) \\
= & P\left(-\frac{\sigma}{\sigma}<\frac{X-\mu}{\sigma}<\frac{\sigma}{\sigma}\right) \\
= & P(-1<Z<1) \\
\cong & 0.68 \pi<
\end{aligned}
$$

$$
\text { Ex. } \quad X \sim N(50,10) ; \quad \sigma=10
$$

$$
P(X<55)=?
$$

$$
P(x<55)=P\left(\frac{x-50}{10}<\frac{55-50}{10}\right)
$$

$$
=P(Z<0.5) \quad Z \sim N(0,1) .
$$

from Table IV direct lookup

Ex. The average monthly mortgage payment for all homeowners in a city is $\$ 2,850$. Suppose the distribution of monthly mortgages is normal with a mean of $\$ 2,850$ and a standard deviation of $\$ 420$. Find the probability that a randomly selected homeowner pays a monthly mortgage that is
i) less than $\$ 1,200$

Given: $\quad X=$ monthly mortgage payment.

$$
X \sim N(2850,420)
$$

$$
\begin{aligned}
& P(X<1200)=? \\
& \begin{aligned}
P(X<1200) & =P\left(Z<\frac{1200-2850}{420}\right) \\
& =P(Z<-3.93)<0.0002 \\
(& \approx 0.0002)
\end{aligned}
\end{aligned}
$$

Interpretation:
a) The Prob. that a randomly selected homeowner pays less than $\$ 1200 /$ month is approx. 0.0002 .
b) The percentage of homeowners whose monthly mortgage payment is less than $\$ 1200$ is approx. 0.02%.
b) between $\$ 2,300$ and $\$ 3,140$.

want: $P(2300<X<3140)$

$$
\begin{aligned}
P(2300<X<3140) & =P\left(\frac{2300-2850}{420}<Z<\frac{3140-2850}{420}\right) \\
& =P(-1.31<Z<0.69) \\
& =P(Z<0.69)-P(Z<-1.31) \\
& =0.7549-0.0951=0.6598
\end{aligned}
$$

(See Table IV).
$\approx 66 \%$ of homeowners' monthly mortgage payments are between $\$ 2,300$ and $\$ 3,140$.
iii) more than $\$ 3,600$
want: $P(X>3600)$.

$$
\begin{aligned}
P(X>3600) & =P\left(z>\frac{3600-2850}{420}\right) \\
& =P(z>1.79) \\
& =1-P(z<1.79) \\
\text { Table II } \quad \leftarrow & =1-0.9633=0.0367 \text { (Check!) }
\end{aligned}
$$

Approx. 3.7\% of monthly mortgage payments exceed $\$ 3,600$.

