STAT_1301; Lecture 15; March 7, '24

Ex. The probability that a person who undergoes a kidney operation is 0.6 . Find the Probability that of the six patients who undergo Similar operations:
a) hone will recover

Let $X=\#$ of patients out of six who recover want: $P(x=0)$
i) $n=6$ trials
ii) Bernoulli trials: Two possible outcomes which are recover/ do not recover.

* iii) Trials independent: Yes, because $\frac{n}{N}<0.05$ (v) $P(S)=P($ recovers $)=0.6$ for all trials. $X \sim \operatorname{Bin}(6,0.6)$
* Can say independence due to biological reasons.

$$
\begin{aligned}
P(X=0) & =6 C_{0} \times 0.60^{0} \times 0.4^{6-0} \\
& =\frac{6!}{0!(6-0)!} \times 1 \times 0.4^{6} \\
& =\frac{6!}{2!\times 6!} \times 1 \times 0.4^{6} \\
& =0.4^{6}=0.0041 .
\end{aligned}
$$

b) all will recover
want: $P(X=6)=P($ all recover $)$

$$
\begin{aligned}
P(X=6) & ={ }_{6} C_{6} 0.6^{6} \times 0.6^{6-6} \\
& =\frac{6!}{6!(6-6)!} \times 0.6^{6} \times 0.6^{0} \\
& =\frac{6!}{6!Q!} \times 0.6^{6} \times 1 \\
& =0.6^{6}=0.0467
\end{aligned}
$$

c) half will recover want: $P(X=3)$

$$
\begin{aligned}
P(X=3) & =6 C_{3} 0.6^{3} \times 0.4^{6-3} \\
& =\frac{6!}{3!(6-3)!} \times 0.6^{3} \times 0.4^{3} \\
& =\frac{6!}{3!\times 3!} \times 0.6^{3} \times 0.4^{3} \\
& =20 \times 0.6^{3} \times 0.4^{3}=0.2765
\end{aligned}
$$

$$
n=6, \quad p=0.6=P(\text { recover }), q=1-p=0.4=P(\text { not }
$$ recover)

d) at least half will recover.

$$
\begin{gathered}
P(X \geqslant 3)=P(X=3 \text { or } X=4 \text { or } X=5 \text { or } X=6) \\
=P(X=3)+P(X=4)+P(X=5) \\
+P(X=6)
\end{gathered}
$$

$$
\begin{aligned}
& =0.2765+6 C_{4} 0.6 \times 0.4^{6-4}+{ }_{6} C_{5} 0.6 \times 0.4^{5-5}+0.0467 \\
& =0.2765+15(0.0207)+{ }_{i}^{6}(0.0311)+0.0467
\end{aligned}
$$

Check!
Check!

