STAT-1301; Lecture 14; March 5,124
See Nexus for Assignment \#4; Due March 14, 124

In Ch. 5 now.
$X$ is a discrete riv. with Probability distribution, $P(x)$.

Last Class: the mean of a discrete riv. is

$$
\mu=E(x)=\sum_{a \| l x} x P(x)
$$

Ex. Refer to the Consumer Preferences example. $X=$ \# of Consumers who Prefer Product A out of 4 consumers

$$
\begin{array}{c|ccccc}
x & 0 & 1 & 2 & 3 & 4 \\
\hline P(x) & \frac{1}{16} & \frac{4}{16} & \frac{6}{16} & \frac{4}{16} & \frac{1}{16}
\end{array}
$$

What is the expected number of consumers Who prefer product A?

$$
\mu=E(X)=\sum_{\text {a\|l }} x P(x)=
$$

$$
\begin{aligned}
\rightarrow & =0 \times \frac{1}{16}+1 \times \frac{4}{16}+2 \times \frac{6}{16}+3 \times \frac{4}{16}+4 \times \frac{1}{16} \\
& =2 .
\end{aligned}
$$

Ex. A store manager determines the Probability distribution for the number of brand $A$ batteries sold per week to be the following:

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(x)$ | 0.1 | 0.1 | 0.2 | $k$ | 0.2 | 0.1 |

a) What is $P(3)$ ?

Since $\quad \sum_{x=0}^{5} P(x)=1, \quad P(3)=1-(0.1+0.1+0.2+0.2+$

$$
\begin{aligned}
& =1-0.7 \\
& =0.3
\end{aligned}
$$

b) Find the mean number of brand $A$ batteries Sold per week.

$$
\begin{aligned}
\mu=\sum_{\text {all } x} x P(x)=0 \times 0.1 & +1(0.1)+2(0.2)+3(0.3) \\
& +4(0.2)+5(0.1)=2.7
\end{aligned}
$$

Variance of a Discrete R.V. X:

$$
\begin{aligned}
& \sigma^{2}=\operatorname{Var}(X) \stackrel{\text { def }}{ } E(X-\mu)^{2} \text { where } \\
& \mu=E(X)=\sum_{\text {all } x} x P(x)
\end{aligned}
$$

Use short-cut formula:

$$
\sigma^{2}=E\left(x^{2}\right)-\mu^{2} \quad \text { Given on test/final }
$$

where

$$
E\left(X^{2}\right)=\sum_{\text {all } x} x^{2} \cdot P(x)
$$

Ex. Refer to the battery example.
Find the variance of $X$ where $X$ is the number of brand A batteries Sold Per week.

$$
\sigma^{2}=\sum_{a \| x} x^{2} P(x)-\mu^{2}
$$

From above, $\mu=2.7$

$$
\sum_{\text {all } x} x^{2} P(x)=0^{2}(0.1)+1^{2}(0.1)+2^{2}(0.2)+
$$

$$
\begin{aligned}
& +3^{2}(0.3)+4^{2}(0.2)+5^{2}(0.1)=9.3 \\
& \sigma^{2}=\sum x^{2} P(x)-\mu^{2}=9.3-2.7^{2}=2.01
\end{aligned}
$$

The Standard deviation of the r.V. $X$ is

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

In this example, $\sigma=\sqrt{2.01}=1.418 \approx 1.42$.

Now See PDF on Binomial Distribution $(\S 5,4)$.

