Stat_1301; Lecture 11; Feb. 13,'24

New! Assignment \#3 on Nexus due Feb. $26^{\text {th }}$.
Test 1 Info. on Nexus

Ex. Past records indicate that the Probability of a bank Customer opening a Savings account is 0.4 , the probability that a customer opens a chequing account is 0.7 , and that a customer opens a Savings and a chequing account is 0.25 .
a) What is the probability that a randomly Selected customer will open either a Savings account or a chequing account?

Sol'n:
Green: $P(S)=0.4 ; P(C)=0.7 ; P(S \cap C)=0.25$
want: $P(S \cup C)$

$$
P(S \cup C)=P(S)+P(C)-P(S \cap C)
$$

$$
=0.4+0.7-0.25=0.85
$$

b) What is the probability that a randomly selected customer will open neither a Savings account nor a chequing account?
want: $P(\bar{S} \cap \bar{C})$.

Try: $\left.P(\bar{S} \cap \bar{C})=\underset{q_{v}}{P}(\overline{\bar{S}}) \times \underset{?}{P(\bar{C} \mid \bar{S}}\right)$
Try: $P(\bar{S} \cap \bar{C})=P(\bar{C}) \times \underset{\sim}{P} \underset{?}{\bar{S} \mid \bar{C})}$

Outside of SUC

$$
\begin{aligned}
& \bar{S} \cap \bar{C}=\overline{S U C} \\
& P(\bar{S} \cap \bar{C})=P(\overline{S \cup C})=1-P(S \cup C) \\
& =1-0.85=0.15 \quad \text { using } \operatorname{Part}(a) .
\end{aligned}
$$

Rule: $P(\bar{S} \cap \bar{C})=P(\overline{S U C})=1-P(S \cup C)$
$P($ "neither S nor $C)=1-P($ Either S or C).

Other rules of Probability (NOT in ebook):

1. $P(\bar{A} \cap \bar{B})=P(\overline{A \cup B})=1-P(A \cup B)$.
2. $P(A$ or B but not both $)=?=(x \times)$

$$
(x x)=P(A \cup B)-P(A \cap B) .
$$

3. $P(A \cap \bar{B})=P(A$ and $\operatorname{not} B)=(x \times x)$

$$
(x x x)=P(A)-P(A \cap B) .
$$

4. $P(\bar{B} \mid A)=1-P(B \mid A)$
"Law of Complements for Condihonal Probabilities".
[Aside:

$$
\begin{array}{rlr}
P(\bar{B} \mid A) & =\frac{P(\bar{B} \cap A)}{P(A)} \quad & \begin{array}{l}
\text { See } \\
\text { formula sheet } \\
\text { for conditional } \\
\text { Prob. }
\end{array} \\
& =\frac{P(A \cap \bar{B})}{P(A)} & \\
& =\frac{P(A)-P(A \cap B)^{5}}{P(A)}
\end{array}
$$

$$
\begin{aligned}
& =\frac{P(A)-P(A) \times P(B \mid A)}{P(A)} \\
& \left.=\frac{P(A)(1-P(B \mid A))}{P(A)}\right]
\end{aligned}
$$

5) Bayes' Rule (FYI).

Now see PowerPoint Slides for a mix of Probability Problems.

