
STATISTICS IN MEDICINE
Statist. Med. 2001; 20:1931–1945 (DOI: 10.1002/sim.822)

Simultaneous modelling of operative mortality and long-term
survival after coronary artery bypass surgery

M. Ghahramani1, C. B. Dean2;∗;† and J. J. Spinelli3

1 Department of Mathematical Sciences; University of Alberta; Edmonton; Alberta T6G 2G1; Canada
2 Department of Statistics and Actuarial Science; Simon Fraser University; Burnaby; British Columbia;

V5A 1S6; Canada
3 Cancer Control Research Program; British Columbia Cancer Agency; Vancouver;

British Columbia; V5T 4E6; Canada

SUMMARY

Typical analyses of lifetime data treat the time to death or failure as the response variable and use
a variety of modelling strategies such as proportional hazards or fully parametric, to investigate the
relationship between the response and covariates. In certain circumstances it may be more natural to
view the distribution of the response variable as consisting of two or more parts since the survival curve
appears segmented. This article addresses such a scenario and we propose a model for simultaneously
investigating the e8ects of covariates over the two segments. The model is an analogue of that proposed
by Lambert for zero-in:ated Poisson regression. The application is central to the model development
and is concerned with survival after coronary artery bypass surgery. Here operative mortality, de=ned
as death within 30 days after surgery, and long-term mortality, are viewed as distinct outcomes. For
the application considered, the survivor function displays much steeper descent during the =rst 30 days
after surgery, that is, for operative mortality, than after this period. An investigation of the e8ects
of covariates on operative and long-term mortality after coronary artery bypass surgery illustrates the
usefulness of the proposed model. Copyright ? 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

Standard lifetime analysis models time to failure, usually as a function of covariates, employ-
ing parametric models such as the Weibull or exponential, or semi-parametric methods such
as the Cox proportional hazards model. Sometimes, however, preliminary analysis of lifetime
data indicates that the survival curve appears segmented with a steep initial descent followed
by a less drastic mortality rate. This is not uncommon in situations where treatment is harsh,
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Figure 1. Estimated survivor function for the coronary artery bypass data.

and lifetime is measured from the start of such treatment. For example, our motivating ap-
plication considers mortality after coronary artery bypass (CAB) surgery. CAB surgery is the
most commonly performed open heart surgical procedure, and is used for the treatment of
serious ischaemic heart disease. Ischaemic heart disease is reduced or non-existent blood :ow
to the heart resulting from the clogging of one or more arteries. In bypass surgery, another
vein or artery is used to bring blood directly to the vessel below the obstruction. CAB carries
a high risk of operative mortality, de=ned as death within 30 days after surgery. Figure 1
presents the Kaplan–Meier survivor function for CAB data from British Columbia and il-
lustrates steep initial descent. Note that this estimated survivor function does not take into
account covariate e8ects. Prediction of operative mortality after CAB surgery has been ex-
tensively studied and recently reviewed [1; 2]. There have also been many studies examining
predictors of long-term survival, for example, references [3–5].

This article introduces a new approach to the modelling of survival data after bypass
surgery. Operative mortality, a binary endpoint, and long-term survival, a continuous life-
time variable, are studied simultaneously using data from a population-based cardiac surgery
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database in British Columbia, Canada. This new technique for simultaneously assessing the
e8ects of covariates on both of these outcomes permits an exploration of structure in the
e8ects of the covariates which may not be apparent from =tting separate models to these
two outcomes. It is an adaptation of a model developed by Lambert [6] for a manufactur-
ing scenario involving count data where there are many more zero counts than expected.
Another model [7; 8] relating time to early death and a binary variable for long-term sur-
vivorship shares the similarity with the model developed herein that it is a mixture model
dealing with a continuous variable and binary endpoint. However, here it is early death or
operative mortality which is the binary endpoint. This translates into a distinct formulation
of the parts contributing to the mixture, so the resulting likelihood is quite di8erent. Al-
though the development of the likelihood and inference for the model parameters is framed
in the context of our particular application to survival after cardiac surgery, it should be noted
that the model can be applied more generally to situations where initial treatment is harsh
enough that the Kaplan–Meier survival curve exhibits the form in Figure 1.

In Section 2 we develop the model for simultaneously investigating the e8ects of covari-
ates on operative and long-term mortality and discuss inference for this model. In Section 3
we illustrate the model using the British Columbia Cardiac Registries data and examine its
goodness-of-=t. The article closes with a discussion of extensions to the model.

2. SIMULTANEOUS MODELLING OF SHORT- AND LONG-TERM SURVIVAL

2.1. Introduction and model assumptions

Traditional survival analysis involves =tting a model to a single response, lifetime. For our ap-
plication, this assumes both operative mortality (or short-term survival) and long-term survival
are in:uenced by the same set of covariates. Although this may be a reasonable assumption,
we wish to develop a model which will view these two outcomes separately, and allow
predictions for them.

A natural approach to =tting two separate models would be to =t a logistic regression model
to predict operative mortality and a proportional hazards model or a parametric regression
model to predict long-term survival, that is, survival after 30 days. Since the Weibull regression
model is a proportional hazards model and is a :exible one, we use this model to describe
the distribution of long-term survival. The PDF of lifetime, t, under the Weibull assumption
given a vector x of regressor variables, is

�
�(x)

(
t

�(x)

)�−1

exp

[
−
(

t
�(x)

)�]
; t ¿ 0 (1)

where � and � are the parameters of the Weibull regression model. Here, only the scale
parameter � depends on x, which implies proportional hazards for lifetimes and constant
variance for log-lifetimes of individuals (Lawless [9]). More precisely, for i=1; : : : ; n let

zi =
{

1 if the ith individual died within the =rst 30 days after surgery
0 otherwise

Let pi =P(zi =1) be the probability that the ith individual dies within the =rst 30 days after
surgery, p=(p1; : : : ; pn). Furthermore, let Ti denote the ith lifetime, Li denote the ith censoring
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time for the individual who has survived beyond 30 days after surgery and ti = min{Ti; Li}.
Here, lifetime is de=ned as the interval between date of surgery and death date, for our
application. Then let

Yi =
{
ti − 30 if zi =0
0 otherwise

We will work with log-lifetimes since the resulting model is a linear regression model and
is notationally simpler to describe than the Weibull regression model. The distribution of
W = log(Y ), given the covariate vector x and z=0, is the extreme-value distribution whose
PDF is the following:

g(w|z=0;x)=
1
�
exp

[
w − �(x)

�
− exp

(
w − �(x)

�

)]
; −∞¡w¡∞ (2)

where �(x)= log �(x) and �=1=�. The most frequently used model is the linear one, with

�(x)=x�

Thus, =tting two separate models, a logistic regression model to the binary response and an
extreme-value regression model to the lifetimes conditional on zi =0 gives

logit(p) =G�

log(Y) =X?�+ �” (3)

for covariate matrices G and X?. Here, ” follows a standard extreme-value distribution and
� is the scale parameter of the extreme-value regression model.

In order to tackle the problem of simultaneous estimation of covariate e8ects on operative
mortality and long-term survival, we use a model analogous to that derived by Lambert [6].
Here we pool information from the model predicting operative mortality with that which pre-
dicts long-term survival. If the same covariates a8ect logit(p) and log(Y) so that as operative
mortality decreases, long-term survival increases, we may have

logit(p) =−�X�

log(Y) =X?�+ �” (4)

for covariate matrices X; X?, and unknown real-valued shape parameter �. Note that the
covariate matrices X and X? contain the same set of covariates but di8er in their number of
rows since X contains data from all cases, while X? contains information only from those
cases who survived the =rst 30 days. When �¿0, the risk of operative mortality decreases
as long-term survival increases, and as �→∞, the risk of operative mortality diminishes. As
�→−∞, the risk of operative mortality becomes certain.

The parameterization in (4) however, assumes that the same set of covariates in:uence
both operative mortality and long-term survival. In order to provide a bit more :exibility
to accommodate those covariates whose e8ects on the two outcomes may di8er, model 4 is
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reformulated as

logit(p) =−�X�+Z�

log(Y) =X?�+ �” (5)

where � contains the parameters corresponding to those covariates whose e8ects on operative
mortality and long-term survival di8er. In order to avoid overparameterizing, while X and
X∗ contain a general constant term represented by a column of ones, Z does not. What is
envisioned is that X and Z should contain di8erent sets of covariates, or, perhaps, just a
few in common. The focus of =tting the simultaneous model (5) is to explore commonalities
which lead to simple structures for covariate e8ects. For example, in the application discussed
in Section 3, only one covariate is common to X and Z, and � is estimated as unity. If no
such simple structure exists, as happens when there are many common covariates in X and
Z, a model allowing all covariates to have di8erent parameters for short versus long-term
survival, as in (3), is preferable.

2.2. Likelihood development and maximum likelihood estimation

The likelihood functions under the three di8erent model formulations (3), (4) and (5) are very
similar and only the likelihood function for the model (5) will be presented. Let z=(z1; : : : ; zn)
be the vector of indicators for operative mortality and let W= log(Y) where Y=(Y1; : : : ; Yn).
Then f(z;w), the joint probability of z and w is given by f(z;w)=f(w|z)f(z) and the
likelihood L(�; �; �; �; z;w) is given by

n∏
i= 1

f(zi; �; �; �)
∏
i∈D

g(wi|zi =0;�; �)
∏
i∈C

S(wi|zi =0;�; �)

where f(:) is the PDF of zi, S(:) is the survivor function corresponding to g(:), D is the set of
individuals who survived the =rst 30 days after CAB surgery and whose lifetime is observed
and C is the set of individuals who survived the =rst 30 days after CAB surgery and whose
lifetime is censored. Let X?

i and Zi denote the ith row of X? and Z, respectively, and let r
be the number of individuals in D. Then, since

f(zi) =pzi
i (1− pi)1−zi (6)

g(wi|zi =0;�; �)=
1
�
exp

[
wi −X?

i �
�

− exp
(
wi −X?

i �
�

)]
(7)

S(wi|zi =0;�; �)= exp
(
− exp

(
wi −X?

i �
�

))
(8)

the log of the likelihood becomes

logL(�; �; �; �; z;w) =
n∑

i= 1
{zi[−�Xi�+Zi�]− log(1 + exp(−�Xi�+Zi�))}

+
∑
i∈D

wi −X?
i �

�
− ∑

i∈D;C
exp

(
wi −X?

i �
�

)
− r log � (9)
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The maximum likelihood estimates of �, �, � and � are obtained from (9); we have ex-
perienced no diOculties implementing a Newton–Raphson algorithm, for example. First and
second partial derivatives are required for the algorithm. For ease of presentation, the com-
ponents of the score vector

U=
(
@ logL
@�1

; : : : ;
@ logL
@�q

;
@ logL
@�1

; : : : ;
@ logL
@�p

;
@ logL

@�
;
@ logL
@�

)

and the observed Fisher information matrix I0 have been relegated to Appendix A.
In the model =tting process, to test the hypothesis H0:�i =0 versus the alternative H1:�i �= 0

or H0:�i =0 versus H1:�i �= 0, the standard large-sample likelihood ratio test may be employed.
The signi=cance of the covariate e8ects should be assessed in the presence of � before testing
hypotheses concerning �. Pro=le plots for � and � should be examined in order to evaluate
whether it is reasonable to assume that �=1 or �=1. If we fail to reject the null hypothesis
that � equals one, the model reduces to an exponential regression model.

From a clinical point of view, it is of interest to view the e8ects of the covariates via
odds ratios and relative risks. Odds ratios of predictors of operative mortality are found by
exponentiating the parameter estimates in the logistic regression model. For an extreme-value
regression model, the estimated relative risk of the jth risk factor relative to the baseline is
exp(−�̂j=�̂). For a categorical variable, xj, this is interpreted as the ratio of hazard functions
when xj =1 versus when xj =0, given all other covariates are =xed. The relative risk for
a continuous variable measures the risk ratio when xj is increased by unity. Note that for
the simultaneous model, when there are common covariates in X and Z, the estimated odds
ratios of the corresponding predictors of operative mortality will be found by combining two
estimates, one a component of �, the other a component of �. Hence, standard errors for such
estimates will need to take into account estimated covariances of these estimated components.
If � is not unity, estimated odds ratios for operative mortality will also need to account for
this factor both in the estimated e8ects and in their estimated variances, through the delta
approximation for the latter.

3. APPLICATION TO THE BRITISH COLUMBIA CARDIAC REGISTRIES DATA

The British Columbia Cardiac Registries (BCCR) maintains a population-based database con-
taining prognostic information on all open-heart surgery performed in the province of British
Columbia. Data collection began in January 1991, and the analysis which follows is an ex-
amination of data collected on all isolated coronary artery bypass (CAB) surgery performed
before 31 December 1994. The data come primarily from the Operative report which is com-
pleted by the surgeon immediately after surgery. Prognostic information can be grouped as
belonging to a number of di8erent categories including demographic information, information
on previous cardiac surgery, diagnosis information, other diseases co-existent at the time of
cardiac surgery, urgency of surgery and measures of severity of disease. Based on discussions
with clinicians and previous work published on predicting operative mortality, a list of po-
tential prognostic factors was developed. Data on most of these are recorded on the operative
report, however, for some variables these data were obtained from other sources. Altogether,
there were 33 prognostic factors examined.
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Table I. Signi=cant and potentially signi=cant predictors.

Operative mortality Long-term survival

Signi=cant predictor Signi=cant predictor

Gender?† Re-operation?†

Urgency of surgery?† Diabetes?

Pre-op iv nitroglycerine?† Peripheral vascular disease?†

Peripheral vascular disease Dialysis=elevated creatinine?†

Urban=rural residence?† Congestive heart failure?†

Age?† Number of diseased vessels?†

Ejection fraction?† Year of surgery?

Diabetes? Ejection fraction?†

Dialysis=elevated creatinine? Age?†

Congestive heart failure?

Year of surgery

Potentially signi=cant predictor Potentially signi=cant predictor

Re-operation?† ASA within 5 days
Number of diseased vessels?† Pre-op ventilation=intubation?

ASA within 5 days Cerebrovascular disease?

Pre-op ventilation=intubation?† Pulmonary hypertension
Cerebrovascular disease? Pre-op diuretic?†

Pulmonary hypertension† Urgency of surgery
Pre-op diuretic ?†

Since the list of potential risk factors is large, several variable selection procedures were
implemented in the model =tting process in order to make the model parsimonious. These
included backward elimination, simultaneously dropping several variables, and stepwise pro-
cedures. No matter which model =tting procedure was used, one set of covariates was
consistently identi=ed as important in predicting operative mortality and long-term survival;
Table I lists these as ‘signi=cant predictors’. There were a few other covariates which ap-
peared as predictors in some model =tting procedures and not in others; these are identi=ed
in Table I as ‘potentially signi=cant predictors’.

Examination of the estimates for the year of surgery e8ect indicated that cases undergoing
surgery in 1993 tended to have lower operative mortality and longer long-term survival than
those corresponding to 1991, 1992 and 1994. Since there was no clinical evidence to support
inclusion of this variable for future predictions, we decided to exclude year of surgery as a
covariate. It was also decided that a model without urgency of surgery and ASA within 5
days of surgery as predictors of long-term survival would be more clinically interpretable.
Covariate selection was next performed on a model which included all the variables listed in
Table I excluding year of surgery, and excluding ASA within 5 days and urgency of surgery
as predictors of long-term survival. Signi=cant predictors from the non-simultaneous model
(3) are identi=ed with a † sign in Table I. Interaction terms with sex and age were also
considered as well as a quadratic term with age. None of these was signi=cant. For exploring
model structure, we consider the simultaneous =t (5) in the following paragraphs. Signi=cant
predictors included in this simultaneous model are identi=ed in Table I with a ? sign.
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Figure 2. Pro=le plots for � and �.

For the simultaneous model, the estimate of � is 1.2 with a standard error of 0.16. A pro=le
plot of � is shown in Figure 2. Visual inspection reveals that � may be set to one. Ninety-=ve
per cent con=dence intervals for � based on the large sample normal approximation to the
distribution of �̂ and based on the pro=le plot are (0.9,1.5) and (0.8,1.6), respectively. Since
there is no evidence against the hypothesis that �=1, we re=t the model with � set at unity.

It is also of interest to test the hypothesis that � is one since this indicates that the simpler
exponential regression model provides a reasonable =t to the data. The estimate of � is 1.02
with a standard error of 0.05. The pro=le plot for � is also given in Figure 2. A 95 per
cent con=dence interval for � based on the asymptotic normality of �̂ is (0.9,1.1) while a 95
per cent con=dence interval based on the pro=le plot of � is (0.9,1.2). Note that these are
obtained under the reduced model with �=1. It seems that the exponential regression model
gives a fair =t to the data.

A half-normal plot of the logistic residuals together with their simulated envelope proposed
by Atkinson [10] showed no obvious discrepancy with the logistic =t. Residuals for the
Weibull =t, are of course, diOcult to interpret since 94 per cent of the observations were
censored. Model assessment is ongoing for this project as data for several more years becomes
accessible. The parameter estimates corresponding to the =tted model with both � and �
equal to one are reported in Table II, while Appendix B provides the estimated covariances.
Estimated odds ratios for operative mortality corresponding to this =t are given in Table III.
The estimated relative risks for long-term mortality are reported in Table IV.

To interpret the simultaneous model in the current context, note that gender, urgency of
surgery and place of residence are signi=cant predictors of operative mortality but not long-
term survival. The increased operative mortality for women and more urgent surgery is well
established [1; 2]. The estimated rural versus urban e8ect is possibly explained by the distance
of the patients to the centres and specialists performing surgery. Interpretation of covariates
which a8ect both operative and long-term mortality is similarly straightforward. For example,
being a diabetic increases risks corresponding to both operative and long-term mortality. In
this case, the odds ratio for operative mortality and the ratio of instantaneous probability of
mortality given survival to date, for a diabetic versus a non-diabetic is about 1.3, given all
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Table II. Parameter estimates and their standard errors for the simultaneous =t with both �=1 and �=1.
Covariates identi=ed with an asterisk are indicator variables for the presence of the named condition or status.

Factor Label �̂ SE(�̂)

Female gender? 0.51 0.21
Urgency of surgery elective

urgent 0.43 0.21
emergency 1.37 0.36

Rural residence? (baseline in urban residence) 0.57 0.21
Peripheral vascular disease? −0.86 0.32

Factor Label �̂ SE(�̂)

Age −0.06 0.01
Ejection fraction ¿50%

35–50% −0.28 0.12
¡35% −0.94 0.15

Re-operation? −0.58 0.15
Diabetes? −0.25 0.13
Pre-op diuretic? −0.43 0.15
Pre-op ventilation=intubation? −1.06 0.45
Peripheral vascular disease? −0.61 0.15
Cerebrovascular disease? −0.32 0.16
Dialysis=elevated creatinine? −0.32 0.16
Congestive heart failure? −0.53 0.14
Number of diseased vessels 1–2

¿ 3 −0.30 0.18
main left stenosis −0.56 0.19

other covariates are the same.
The only striking di8erence between the parameter estimates and their standard errors for

the non-simultaneous (3) and simultaneous (5) =ts relates to the estimated e8ects of pre-op
ventilation and congestive heart failure. For the simultaneous =t, both of these variables are
included and are highly signi=cant, while for the non-simultaneous =t, of these two variables,
only pre-op ventilation remains in the =nal =tted model, also being highly signi=cant. If
the estimated e8ects of pre-op ventilation (−1:06) and congestive heart failure (−0:53) from
the =tted simultaneous model are added, the estimated joint e8ect is close to that of pre-op
ventilation (−1:85) in the non-simultaneous =t. Pre-op ventilation is often needed because
of congestive heart failure. Hence, in the simultaneous model, it may be the joint e8ect of
these two variables which better re:ects either of their e8ects. It may have been better to
combine these variables in the analyses, or to isolate those individuals who fell into both
these categories as a separate higher risk congestive heart failure category. The other di8er-
ences between these two =tted models relate to the weakest predictors, those which are only
marginally signi=cant in either of the models. For example, diabetes, cerebrovascular disease
and dialysis are all included as marginally signi=cant predictors in the simultaneous model
(see Table II), but not in the non-simultaneous model.

With small or moderately sized samples, rather than rely on maximum likelihood asymptotic
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Table III. Odds ratios for operative mortality and their con=dence intervals for the simultaneous
=t with �=1 and �=1. Covariates identi=ed with an asterisk are indicator variables for the

presence of the named condition or status.

Factor Label OR 95 per cent CI

Female gender? 1.67 (1.11, 2.5)
Urgency of surgery elective 1.00

urgent 1.53 (1.02, 2.29)
emergency 3.92 (1.95, 7.87)

Rural residence? (baseline is urban residence) 1.77 (1.18, 2.65)
Peripheral vascular disease? 0.77 (0.44, 1.37)
Age 1.06 (1.05, 1.07)
Ejection fraction ¿50% 1.00

35–50% 1.32 (1.05, 1.67)
¡35% 2.56 (1.92, 3.40)

Re-operation? 1.79 (1.32, 2.41)
Diabetes? 1.29 (1.00, 1.66)
Pre-op diuretic? 1.53 (1.14, 2.05)
Pre-op ventilation=intubation? 2.90 (1.19, 7.05)
Cerebrovascular disease? 1.37 (1.01, 1.87)
Dialysis=elevated creatinine? 1.37 (1.04, 1.80)
Congestive heart failure? 1.71 (1.29, 2.26)
Number of diseased vessels 1–2 1.00

¿ 3 1.35 (1.00, 1.91)
main left stenosis 1.74 (1.19, 2.55)

Table IV. Relative risks for long-term mortality and their con=dence intervals for the simulta-
neous =t with �=1 and �=1. Covariates identi=ed with an asterisk are indicator variables for

the presence of the named condition or status.

Factor Label RR 95 per cent CI

Age 1.06 (1.05, 1.07)
Ejection fraction ¿50% 1.00

35–50% 1.32 (1.05, 1.67)
¡35% 2.56 (1.92, 3.40)

Re-operation? 1.79 (1.32, 2.41)
Diabetes? 1.29 (1.00, 1.66)
Pre-op diuretic? 1.53 (1.14, 2.05)
Pre-op ventilation=intubation? 2.90 (1.19, 7.05)
Peripheral vascular disease? 1.83 (1.37, 2.44)
Cerebrovascular disease? 1.37 (1.01, 1.87)
Dialysis=elevated creatinine? 1.37 (1.04, 1.80)
Congestive heart failure? 1.71 (1.29, 2.26)
Number of diseased vessels 1–2 1.00

¿ 3 1.35 (1.00, 1.91)
main left stenosis 1.74 (1.19, 2.55)
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Table V. Maximum likelihood estimates, their estimated standard errors, jack-knifed estimates
of bias and jack-knifed estimates of standard errors. Covariates identi=ed with an asterisk are

indicator variables for the presence of the named condition or status.

Factor Estimate Bias Standard error
Model-based Jack-knife

�0 5.339 −0:026 0.224 0.230
Female gender? 0.510 −0:004 0.208 0.208
Urgency of surgery: urgent 0.426 0.003 0.207 0.208
Urgency of surgery: emergency 1.366 −0:028 0.356 0.342
Rural residence? 0.571 0.009 0.207 0.210
Peripheral vascular disease? −0:861 −0:024 0.317 0.326
�0 10.800 0.023 0.175 0.178
Age −0:059 −0:000 0.007 0.007
Ejection fraction: 35–50% −0:279 −0:001 0.119 0.119
Ejection fraction: ¡35% −0:938 −0:005 0.146 0.151
Reoperation? −0:581 0.001 0.153 0.167
Diabetes? −0:254 0.001 0.128 0.132
Pre-op diuretic? −0:426 0.002 0.148 0.155
Pre-op ventilation? −1:063 0.009 0.454 0.543
Peripheral vascular disease? −0:606 0.003 0.147 0.155
Cerebrovascular disease? −0:316 0.003 0.158 0.163
Dialysis=elevated creatinine? −0:315 0.001 0.140 0.142
Congestive heart failure? −0:535 −0:002 0.143 0.151
Number of diseased vessels: ¿ 3 −0:304 −0:010 0.176 0.181
Number of diseased vessels: main left stenosis −0:556 −0:010 0.194 0.196

theory, it may be preferable to use a resampling variance estimate, such as the bootstrap
or its approximation the jack-knife [11]. Both are convenient with the usual availability of
good computing facilities. Though the sample size is quite large here, we discuss jack-knife
procedures because of their robustness and their diagnostic bene=t. Table V provides jack-
knifed estimates of the bias in the estimated parameters from the =tted simultaneous model
(5) and jack-knifed estimates of their standard errors. It is apparent that maximum likelihood
asymptotic theory works quite well here, as biases are negligible, and the likelihood-based
standard errors are quite close to the jack-knifed ones. Plots of the jack-knifed estimates, for
each covariate, versus the case deleted, are useful for case-deletion diagnostics, in that they
can pinpoint observations which have undue in:uence on covariate estimates. In this example,
these plots, not shown here, provide no striking evidence of in:uential cases.

4. DISCUSSION

The model discussed here provides a straightforward way of separating mortality after surgery
into two outcomes to re:ect severity of response to a surgical treatment. It provides for
parsimony in representation and we have had no diOculties implementing its =t. In general,
the non-simultaneous =tting o8ers greater :exibility. However, the simultaneous model is
a tool which aids in understanding the nature of the joint e8ects on short- and long-term
survival, to see whether the parameters from the long-term model are modulated in the same
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fashion as the short-term, for example. There is ease of interpretation a8orded when � and �
are unity.

Other forms than the logistic regression model can be used for modelling the probability
of operative mortality as a function of covariates; for example, the log–log link de=ned
by log(− log(p))= �X� or the complementary log–log link de=ned by log(− log(1 − p))=
− �X�. In addition, an interesting and logical extension of the simultaneous model discussed
here is one which =ts a logistic regression model to operative mortality together with Cox’s
proportional hazards model for long-term survival. This may be more robust than the use of
the Weibull model for long-term survival. In a recent publication, Chevret et al. [12] used
a Markov process approach to address a similar issue of modelling two endpoints; further
exploration of this approach in the current context would also be useful.

APPENDIX A

Let

ai = exp(−�Xi�+Zi�)

Vi =
(
wi −X?

i

�

)

For the model discussed in Section 3:3, the components of the score vector and the infor-
mation matrix are the following:
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The partitioned form of the observed information matrix I0 is of the form
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In the iteration process, let *0 be the initial estimate of the parameter vector *=(�; �; �; �).
Calculate U(*0) and I(*0). The next approximation *1 to * is given by

*1 = *0 − I(*0)−1U(*0)

For =tting models (4) and (5), an initial value of * can be obtained by manipulation of the
estimates from (3).
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APPENDIX B

Estimated covariances of the parameter estimates from the =tted simultaneous model (5).

Parameter De=nition
�0 Constant in operative mortality model
�1 Indicator for female gender
�2 Indicator for urgent surgery
�3 Indicator for emergency surgery
�4 Indicator for periph. vasc. disease in operative mortality
�5 Indicator for rural residence
�0 Constant in long-term survival model
�1 Age-65
�2 Indicator for ejection fraction: 35–50%
�3 Indicator for ejection fraction ¡35%
�4 Indicator for reoperation
�5 Indicator for diabetes
�6 Indicator for pre-op diuretic use
�7 Indicator for pre-op ventilation=intubation
�8 Indicator for periph. vasc. disease in long-term model
�9 Indicator for cerebrovascular disease
�10 Indicator for dialysis=elevated creatinine
�11 Indicator for congestive heart failure
�12 Indicator for three diseased vessels
�13 Indicator for main left stenosis

�0 �1 �2 �3 �4 �5
�0 0:0501 −0:0139 −0:0198 −0:0218 −0:0161 −0:0279
�1 0:0431 −0:0016 −0:0026 0:0015 0:0008
�2 0:0429 0:0221 −0:0017 −0:0022
�3 0:1265 0:0029 0:0004
�4 0:1005 0:0008
�5 0:0427

�0 �1 �2 �3 �4 �5
�0 0:0046 0:0010 −0:0014 0:0034 −0:0047 0:0005
�1 0:0000 0:0001 0:0001 0:0000 0:0000 0:0000
�2 −0:0001 −0:0005 0:0003 0:0011 0:0003 0:0000
�3 0:0007 −0:0016 0:0001 −0:0003 −0:0003 −0:0007
�4 −0:0001 −0:0015 0:0003 −0:0001 0:0005 0:0003
�5 0:0002 0:0007 0:0000 −0:0003 −0:0007 −0:0004
�6 −0:0007 0:0012 0:0008 0:0008 −0:0001 0:0001
�7 −0:0010 −0:0001 0:0009 0:0342 0:0013 −0:0010
�8 −0:0047 −0:0003 −0:0004 0:0003 0:0182 0:0002
�9 0:0005 0:0004 −0:0001 −0:0008 −0:0004 −0:0007
�10 −0:0004 −0:0007 −0:0004 −0:0011 0:0007 0:0012
�11 −0:0003 0:0006 0:0006 0:0021 0:0002 −0:0001
�12 0:0004 −0:0008 0:0001 −0:0051 0:0000 −0:0001
�13 −0:0001 −0:0011 0:0033 −0:0035 −0:0002 −0:0013
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�0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13
�0 0:0307 −0:0001 −0:0048 −0:0046 −0:0020 −0:0020 0:0003 −0:0020 −0:0022 −0:0010 −0:0005 0:0007 −0:0252 −0:0255
�1 0:0000 0:0000 0:0001 0:0000 0:0001 0:0000 0:0001 0:0000 −0:0001 0:0000 −0:0001 −0:0001 −0:0001
�2 0:0141 0:0070 −0:0010 0:0002 0:0003 −0:0015 −0:0006 −0:0001 0:0003 −0:0023 −0:0011 −0:0004
�3 0:0212 −0:0020 −0:0005 −0:0020 −0:0049 −0:0006 0:0009 0:0003 −0:0076 −0:0009 −0:0004
�4 0:0235 0:0014 −0:0012 0:0018 0:0001 0:0015 −0:0017 0:0011 −0:0008 0:0000
�5 0:0165 −0:0028 0:0003 −0:0016 −0:0007 −0:0013 −0:0001 −0:0011 0:0002
�6 0:0220 0:0042 −0:0015 0:0001 −0:0037 −0:0062 −0:0013 −0:0003
�7 0:2062 0:0008 −0:0008 −0:0006 −0:0040 0:0018 −0:0003
�8 0:0215 −0:0076 −0:0016 −0:0010 −0:0006 −0:0013
�9 0:0249 −0:0017 0:0004 −0:0005 −0:0013
�10 0:0196 −0:0022 −0:0009 −0:0010
�11 0:0206 −0:0007 −0:0011
�12 0:0311 0:0270
�13 0:0375
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