Objectives:

- Binomial Distribution and it's moments: Section 5-4 of text.

Chapter 5: Discrete Random Variables and their Probability Distributions

Section 5-4: Binomial Probability Distributions

- In this section we study a discrete probability distribution known as the Binomial probability distribution.
- Consider a random variable Y, that takes on one of two possible values, say, 0 (failure) or 1 (success).
- And, Y has the following probability distribution

y	0	1
$P(y)$	$1-\mathrm{p}$	p

We say, Y is a Bernoulli random variable or Bernoulli trial with success probability p and write

$$
Y \sim \operatorname{Bernoulli}(p) .
$$

Chapter 5: Discrete Probability Distributions

Example: Bernoulli Random Variable

- Experiment: Flip a biased coin where Heads once and observe the outcome. Suppose Heads is expected to appear 60\% of the time.
- Random variable: Outcome of flipping this 'unfair' coin once.
- Possible Outcomes: Heads, Tails.
- Call observing Heads as a success (S). Call observing Tails a failure (F).
- $P(S)=0.6=p, P(F)=0.4=1-p=q$.
- $X \sim$ Bernoulli(0.6).

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Definition

A binomial probability distribution results from a procedure that meets all of the following requirements:
(1) The procedure has a fixed number of trials.
(2) The trials must be independent. That is, the outcome of any individual trial doesn't affect the probabilities in the other trials.
(3) Each trial must have all outcomes classified into two categories.i.e. each trial is a Bernoulli random variable.
(4) The probabilities must remain constant for each trial.

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Notation for Binomial Probability Distributions

\mathbf{S} and \mathbf{F} (success and failure) denote the two possible categories of all outcomes.

- $P(S)=p ; p$ is the probability of a success
- $P(F)=1-p=q ; q$ is the probability of a failure
- n : the number of fixed trials
- x : the observed number of successes in n trials; x can take values $0,1, \ldots, n$

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Definition of a Binomial Random Variable

A random variable that is the number of successes in n independent Bernoulli trials with probability of success p on each trial is called a binomial random variable with parameters n and p. We write

$$
X \sim \operatorname{Bin}(n, p)
$$

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Example 2

Let X, be the random variable that counts the number of girls born to a couple planning to have four children. Suppose that the probability of observing a boy is $\mathbf{0 . 5 3}$. Is X a binomial random variable?

We need to check if all the requirements of a binomial random variable are met.

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions; Example 2 Cont'd
(1) X counts the number of successes (girls) out of four trials.
(2) Only two possible values are possible for each outcome. The trials are Bernoulli trials.
(3) Trials are independent; the outcome of each birth is not affected by the outcome of any other birth.
(4) $P($ "Success" $)=0.47$ for all trials.

Requirements of Binomial experiment are met $\Rightarrow X \sim \operatorname{Bin}(4,0.47)$.

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Example 3

Genetics says that children receive genes from their parents independently. Each child has probability 0.25 of having blood type 0 . If a set of parents has 5 children, does X, the random variable which counts the number of children with blood type O, follow a binomial distribution?

We need to check if all the requirements of a binomial random variable are met.

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions; Example 3 Cont'd
(1) X counts the number of successes (blood type O children) out of five trials.
(2) Only two possible values are possible for each outcome if we view the outcomes as "type O" and "not type O".
(3) Trials are independent; the outcome of each child's blood type is not affected by the outcome of any of the other children's blood type (biologically plausible??).
(4) $P($ "Success" $)=0.25$ for all trials.

$$
X \sim \operatorname{Bin}(5,0.25)
$$

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

When sampling without replacement, the events can be treated as if they were independent if the sample size is small relative to the population size, i.e. $\frac{n}{N}<0.05$.

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Example 4

A company inspects a random sample of 10 empty plastic containers from a shipment of 10,000 and examines them for traces of benzene. Suppose $\mathbf{1 0 \%}$ of the containers have traces of benzene. Is, X, the number of containers contaminated with benzene a binomial random variable?

We need to check if all the requirements of a binomial random variable are met.

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions; Example 4 Cont'd

- Technically, P (Success) $=P($ a container with benzene) is not 10% for all 10 containers due to sampling without replacement.
- However, the sampling fraction is $10 / 10,000=0.001<0.05$.
- Therefore, since the sampling fraction is less than 5%, we may view the events as independent Bernoulli trials with $P($ Success $)=0.1$.
- That is, $X \sim \operatorname{Bin}(10,0.1)$.

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Let $X \sim \operatorname{Bin}(n, p)$. We find $P(x)$, the probability that X takes the value x using the following.

The Binomial Probability Formula

$$
P(x)={ }_{n} C_{x} p^{x} q^{n-x}, \text { for } x=0,1, \ldots, n
$$

Recall: $q=1-p$.
${ }_{n} C_{x}=\binom{n}{x}=\frac{n!}{(n-x)!x!}$, where $n!=n \times(n-1) \times \ldots \times 1$.

For example, $4!=4 \times 3 \times 2 \times 1=24$ and
${ }_{4} C_{2}=\binom{4}{2}=\frac{4!}{(4-2)!2!}=\frac{4!}{2!\times 2!}=\frac{4 \times 3 \times 2!}{2!\times 2!}=6$.
Some facts:
$0!=1$ and $1!=1$
n ! is read as n factorial.

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Example 5

Let X, be the random variable that counts the number of girls born to a couple planning to have four children. Suppose that the probability of observing a boy is $\mathbf{0 . 5}$. Verify the probability distribution of X is the following:

x	0	1	2	3	4
$P(x)$	$1 / 16$	$1 / 4$	$3 / 8$	$1 / 4$	$1 / 16$

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Example 5

Let X, be the random variable that counts the number of girls born to a couple planning to have four children. Suppose that the probability of observing a boy is $\mathbf{0 . 5}$. Verify the probability distribution of X is the following:

x	0	1	2	3	4
$P(x)$	$1 / 16$	$1 / 4$	$3 / 8$	$1 / 4$	$1 / 16$

$$
X \sim \operatorname{Bin}(4,0.5)
$$

Therefore, $P(2)={ }_{4} C_{2} 0.5^{2}(1-0.5)^{4-2}=\frac{3}{8}$.

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Example 4 Revisited:

A company inspects a random sample of 10 empty plastic containers from a shipment of 10,000 and examines them for traces of benzene. Suppose $\mathbf{1 0 \%}$ of the containers have traces of benzene. What is the probability that the sample contains at most one contaminated container?

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Example 4 Revisited:

$$
\begin{aligned}
P(X \leq 1) & =P(X=1, \text { or } X=0) \\
& =P(0)+P(1) \\
& ={ }_{10} C_{0} 0.1^{0}(1-0.1)^{10-0}+{ }_{10} C_{1} 0.1^{1}(1-0.1)^{10-1} \\
& =0.7361
\end{aligned}
$$

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Example 5

When a survey calls residential telephone numbers at random, 80\% of calls fail to reach a live person. A random dialling machine makes 15 calls.
(a) What is the probability that exactly three calls reach a person?
(D) What is probability that at least one call reaches a person?

Chapter 5: Discrete Probability Distributions

Section 5-4: Binomial Probability Distributions

Example 5 Revisited:

- Put $X=$ the number of live calls out of 15 .
- Then $X \sim \operatorname{Bin}(15,0.2)$.
- $P(3)={ }_{15} C_{3} 0.2^{3} 0.8^{12}=0.250$.
- $P(X \geq 1)=P(1)+P(2)+\ldots+P(15)$. Too much work!
- $P(X \geq 1)=1-P(X<1)=1-P(0)=1-0.8^{15}=0.965$.

Chapter 5: Discrete Probability Distributions

Section 5-4: Mean, Variance, and Standard Deviation for the Binomial Probability Distribution

Suppose $X \sim \operatorname{Bin}(n, p)$.
Mean

$$
\mu=E(X)=n p
$$

Variance

$$
\sigma^{2}=n p q=n p(1-p)
$$

Standard Deviation

$$
\sigma=\sqrt{n p q}=\sqrt{n p(1-p)}
$$

These expressions are given on the final exam.

Chapter 5: Discrete Probability Distributions

Section 5-4: Mean, Variance and Standard Deviation for the Binomial Probability Distribution

Example 4 Revisited:

A company inspects a random sample of 10 empty plastic containers from a shipment of $\mathbf{1 0 , 0 0 0}$ and examines them for traces of benzene. Suppose 10% of the containers have traces of benzene. Find the mean and standard deviation of the number of containers out of a sample of ten with benzene.

Chapter 5: Discrete Probability Distributions

Section 5-4: Mean, Variance and Standard Deviation for the Binomial Probability Distribution

Example 4 Revisited:

- $X \sim \operatorname{Bin}(10,0.1)$.
- Mean: $\mu=n p=10(0.1)=1$
- Standard Deviation: $\sigma=\sqrt{n p q}=\sqrt{10(0.1)(0.9)}=0.9487$

